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Background: Multiparty Computation Needs Automated Verification

¡ The simulation-based security proof for multiparty 
computation is tricky, and not easy to understand.

¡ If you are tired of reading and writing tedious proofs…

¡ If you are afraid of unnoticed mistakes in the proof...

we’re here to help!
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Preliminary: Simulation-based Security for Multiparty Computation

real worldideal world

Security Definition: there exists an algorithm that simulates the views of corrupted parties only from corrupted 
parties' inputs and outputs.

simulator

𝑓(𝑥, 𝑦, 𝑧)
= 𝑥 + 𝑦 + 𝑧

𝑥

𝑧 𝑦

ideal functionality
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Verification Methodology

Methodology: try to transform the protocol into a simulator

protocol simulator

✔ (secure)
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3-Party Addition Protocol

Ideal functionality: 𝑓 𝑥, 𝑦, 𝑧 = (𝜆, 𝜆, 𝑥 + 𝑦 + 𝑧)
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Simulator of Charlie

view: (𝑏, 𝑟)
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Technical Goal: to Transform the Protocol to the Simulator
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Representation: Data-flow Graph
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Technical Goal: to remove the dependency on the honest parties’ inputs and outputs, while preserving the 
distribution of the corrupted parties’ views during the transformation.



Proof Step 1
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Proof Step 2
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Proof Step 3
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We can use the ideal functionality’s output, if the protocol is 
correct, and the correctness is preserved during transformation.
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Proof Step 4
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“Good” transformations

Given an equivalent production (𝐿, 𝑅) and a structured-
preserving mapping 𝑓: 𝐿 → 𝐺, transform 𝐺 to 𝐻 by 
substituting 𝑓(𝐿) with 𝑅, and check if
• both 𝐺 and 𝐻 are acyclic;
• the number of each type of the random nodes are 

preserved.

Definition (equivalent rewriting)

Transform 𝐺 to 𝐻 by eliminating a node without out-
edges.

Definition (tail node elimination)

A vintage transformation from 𝐺 to 𝐻 is an injection 
from the nodes of 𝐻 to 𝐺, for every assignment 𝛾 of 
the input and the output correct for 𝐺:
 (i-iv) basic nodes and properties are preserved;
 (v) the distribution of views is preserved;
 (vi) 𝐻 is correct w.r.t. 𝛾.

Definition (vintage transformation)

$

−
𝑎

𝑦

+ + ++ + +
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Soundness

Given an equivalent production 𝑝 = (𝐿, 𝑅) and a match 
morphism 𝑓: 𝐿 → 𝐺, transform 𝐺 to 𝐻 by substituting 
𝑓(𝐿) with 𝑅, and check if
• both 𝐺 and 𝐻 are acyclic;
• the possibilities provided by random nodes are 

preserved.

Definition (equivalent rewriting)

Transform 𝐺 to 𝐻 by eliminating a node without out-
edges.

Definition (tail node elimination)

The transformation from 𝐺 to 𝐻 is a vintage 
transformation, if there exists an injection ℎ! from 
the nodes of 𝐻 to 𝐺, so that for every assignment 𝛾 
on the input and output (s.t. 𝐺 is correct w.r.t. 𝛾):
 (i-iv) basic nodes and properties are preserved;
 (v) the distribution of views is preserved;
 (vi) 𝐻 is correct w.r.t. 𝛾.

Definition (vintage transformation)

$

−
𝑎

𝑦

+ + ++ + +

Given a correct multiparty computation protocol 𝜋, if, for 
any corrupted party set, there is a vintage transformation 
series from 𝜋 to a simulator, then 𝜋 is secure.

Theorem (soundness)
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Algorithm

Given a correct multiparty computation protocol 𝜋, if 
GAuV returns “secure” for any corrupted party set, 
then 𝜋 is secure.

Theorem (soundness)

best-first search, guided by a cost function
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Evaluation

¡ Two cases from the literature

¡ BGW (Ben-Or, Goldwasser and Wigderson) protocols

¡ Binary-to-arithmetic secret sharing conversion

Given a BGW protocol 𝜋, GAuV can prove its security 
for any corrupted party set in polynomial time, with 
suitable cost function.

Theorem (completeness for BGW protocols)
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On Generalization

¡ Hybrid argument: a common proof technique to show the indistinguishability between two distributions.

¡ For other more advanced perfectly secure protocols such as DN and ATLAS, the transformations between 
adjacent hybrids can be mechanized as equivalent rewriting or tail node elimination.

¡ Thus, GAuV can be used to prove the security of these protocols with sufficient amount of time.

Overview A Worked Example Summary

𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = 𝐻𝑦𝑏𝑟𝑖𝑑" = 𝐻𝑦𝑏𝑟𝑖𝑑# = ⋯ = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟
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Summary

¡ An automated verification framework for proving the security of multiparty computation protocols

¡ Security strength: perfect security

¡ Threat model: semi-honest adversary

¡ Condition: correctness of the protocol w.r.t. a deterministic ideal functionality

¡ Trusted code base: self

¡ Open-sourced at https://github.com/leefige/gauv
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https://github.com/leefige/gauv

