' GAuV: A Graph-Based Automated Verification Framework for
Perfect Semi-Honest Security of Multiparty Computation Protocols

L]
Xingyu Xie*, Yifei Li*, Wei Zhang, Tuowei Wang, Shizhen Xu, Jun Zhu, Yifan Song

& Y
a 7 m
/ YT

0, %% 2

N 4) o

AN Tsinghua University

A Worked Example | Our Technique | Evaluation | Summary

Background: Multiparty Computation Needs Automated Verification

® The simulation-based security proof for multiparty ATLAS: Efficient and Scalable MPC in the Honest Majority Setting

computation is tricky, and not easy to understand. -

Scalable and Unconditionally Secure Multiparty

. . . . C tati
m [f you are tired of reading and writing tedious proofs... omputation

Ivan Damgard and Jesper Buus Nielsen*

® [you are afraid of unnoticed mistakes in the proof...
Dept. of Computer Science, BRICS, Aarhus University

we're here to help!

A Worked Example

Our Technique

Evaluation

Summary

Tool Overview

multiparty computation protocol

V (secure)

? (unknown)

) l \ ||

N

AWorked Example | Our Technique | Evaluation | Summary

Preliminary: Simulation-based Security for Multiparty Computation

X

= =

% /f<>\

=\ z y

simulator

ideal world real world

Security Definition: there exists an algorithm that simulates the views of corrupted parties only from corruptedL’
parties' inputs and outputs.

AWorked Example | Our Technique | Evaluation | Summary

Verification Methodology

S| v e

protocol simulator

Methodology: try to transform the protocol into a simulator

Overview A Worked Example Our Technique | Evaluation

| Summary

3-Party Addition Protocol

Alice Bob Charlie
Input: = Input: y Input: z
T 3% Zq
a<r+zx a4 >
b<—a+vy b , c+—b+z
r
wW—cCc—r
Output: w

Ideal functionality: f(x,y,z) = (LA x +y + 2)

Overview A Worked Example

Our Technique | Evaluation

| Summary

Simulator of Charlie

Charlie

Input: z

= 2

Tr < y

view: (b, 1)

A

Overview A Worked Example Our Technique | Evaluation

Summary

Technical Goal: to Transform the Protocol to the Simulator

G; (Protocol)

T <8 Zq

a<r—+
b a+vy
c—b+z
wé—c—rT

return (b,)

Simulator

Input: z,w

return (b,)

Overview A Worked Example Our Technique | Evaluation | Summary

Representation: Data-flow Graph

G; (Protocol) Simulator

r s Z, Input: z,w

a<r+x
b a+vy
+b

¢ T2 return (b,r)
wé—c—r

return (b,)

------§
-G G G G G G G G G G a»

O

Technical Goal: to remove the dependency on the honest parties’ inputs and outputs, while preserving the
distribution of the corrupted parties’ views during the transformation. |

Overview A Worked Example

Proof Step |

G;1 (Protocol) Gy

T $$ Zq a <8 Zq
a<r+cx r<a—2%
b<—a+y b<—a+vy
c+—b+z c—b+z
wéc—r wc—r

return (b,)

return (b,r)

Our Technique | Evaluation Summary
P I S S S S S e s e S . -y
! Equivalent Production [
[%) [
P Ome
I =) -+
: :
| e e e e e e e e e e - 1
’ ———————— -
/ N
Simulator

-
———

Input: z,w

return (b,7)

Overview A Worked Example

Proof Step 2

G;1 (Protocol)

/\

Gz

T $$ Zq

a<r+zx
b a+vy
c+—b+z
wW—Cc—T

return (b,)

a <8 Zq

r<—a—=zx
b a+vy
c—b+z
wc—r

return (b,r)

return (b, 7)

Our Technique | Evaluation Summary
P I S S S S S e s e S . -y
! Equivalent Production [
I I
99 S
s B A O bt N
: :
| e e e e e e e e e e e |
’ ———————— -
/ N
/
Gs @] @ @ @ Simulator
b s Z, | L__+ | | Input: z,w
a+—b—y | — | |
rea—z @t
c+b+z | ‘_ +
b - = return (b,r
w<«—c—r I e * ()
I i
I
I
I

Overview A Worked Example Our Technique | Evaluation | Summary

Equivalent Production

Proof Step 3 O O O _Q

We can use the ideal functionality’s output, if the protocol is
correct, and the correctness is preserved during transformation.

’ -------- -

/ N

G (Protocol) Gy Gs Gq | | | Simulator
| - :
r < Zq a s Zq b s Zq b s Z, : B . I : | Input: z,w
a+<r+zx r<—a—=x a<—b—y a+—b—y | | @4__4 | |
b<—a+vy b<—a+y r<—a—=x c+—b+ =z | : +| |
c—b+z c+—b+z c+—b+z rié—a—2x | | b ——+ | eturn (b 'r)
w—cCc—rT wW—cCc—T wW—Cc—T r<—c—w ' |] ,
return (b,) return (b,r) return (b,r) return (b,r) I : é} l
w—r+y+z [| - :

I -1 :

l |

\

Overview A Worked Example Our Technique | Evaluation | Summary

Proof Step 4

~ T TEETETETTTTN

/

|

 © ©
G;1 (Protocol) G Gs Gs Gs (Simulator) I | |
T <8 Zq a 8 Zqg b<s$Zq b<+s$Z, b<s$Z, [: :
a<r+zx r<—a—=x a<b—y a+b—y cb+z | | b _i*
b<a+y b<a+y ria—=x c—b+z ri-c—w ! |
c—b+z c+—b+z c+—b+z r—a—c return (b,) [: é}
w<«c—r wc—r w—c—r r<c—w W zT+y+2 [|
return (b,) return (b,r) return (b,) return (b,r) I !_ _______ iy

w—r+y+z i _T
\ ©

bl

Overview | AWorked Example Our Technique Evaluation | Summary

“Good”’ transformations

Definition (equivalent rewriting)

Given an equivalent production (L, R) and a structured-

preserving mapping f: L — G, transform G to H by

substituting f (L) with R, and check if

* both G and H are acyclic;

* the number of each type of the random nodes are
preserved.

\+/\+/ \+/

Y ry

e

\+/\+/ \+/

Y Yy

00

PEI I S S S S S .,
-_—e e e e e e e P
PE I S S S S R .,
-_—e e e e s s e P

Definition (vintage transformation)

A vintage transformation from G to H is an injection
from the nodes of H to G, for every assighment y of
the input and the output correct for G:

(i-iv) basic nodes and properties are preserved;

(v) the distribution of views is preserved;

(vi) H is correct w.r.t.y.

Definition (tail node elimination)

Transform G to H by eliminating a node without out-
edges.

-—r eas ea» o> o o

- eos eo» o» o o o

Overview | AWorked Example Our Technique Evaluation | Summary

Definition (vintage transformation)

Soundness The transformation from G to H is a vintage

transformation, if there exists an injection h,, from

the nodes of H to G, so that for every assignment y
on the input and output (s.t. G is correct w.r.t. y):

/ (i-iv) basic nodes and properties are preserved;

(v) the distribution of views is preserved;

(vi) H is correct w.r.t. y.

Theorem (soundness)

Given a correct multiparty computation protocol 7, if, for
any corrupted party set, there is a vintage transformation
series from 1 to a simulator, then 7 is secure.

Overview | AWorked Example | Our Technique Summary

Algorithm

best-first search, guided by a cost function

Theorem (soundness)

Given a correct multiparty computation protocol m, if
GAUV returns “secure” for any corrupted party set,
then 1 is secure.

Overview | AWorked Example | Our Technique Summary

Evaluation

14001 o g X

m Two cases from the literature
1200+

= BGW (Ben-Or, Goldwasser and Wigderson) protocols

1000
m Binary-to-arithmetic secret sharing conversion

800

600

Latency (s)

400

200

Theorem (completeness for BGW protocols) or

Given a BGWV protocol m, GAuV can prove its security BoO 000 5007 2000 25007 2000° 85007 4600 14s00
Data-Flow Graph Size

for any corrupted party set in polynomial time, with

suitable cost function.

Overview | AWorked Example | Our Technique | Evaluation

On Generalization

m Hybrid argument: a common proof technique to show the indistinguishability between two distributions.

® For other more advanced perfectly secure protocols such as DN and ATLAS, the transformations between
adjacent hybrids can be mechanized as equivalent rewriting or tail node elimination.

® Thus, GAuV can be used to prove the security of these protocols with sufficient amount of time.

Party 1 (corrupted) \\ ” Party 2 ¥ Party 3

Party 1 (corrupted) Party 2 Party 3
& ! 1
)
YN 1 1
B 2

1,1 1,!31‘:
\

O¥O)
SO

Overview | AWorked Example | Our Technique | Evaluation

Summary

® An automated verification framework for proving the security of multiparty computation protocols
m Security strength: perfect security
® Threat model: semi-honest adversary
m Condition: correctness of the protocol w.r.t. a deterministic ideal functionality

m Trusted code base: self

®m Open-sourced at https://github.com/leefige/gauv

/W

https://github.com/leefige/gauv

