' GAuV: A Graph-Based Automated Verification Framework for
Perfect Semi-Honest Security of Multiparty Computation Protocols
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Background: Multiparty Computation Needs Automated Verification

®  The simulation-based security proof for multiparty ATLAS: Efficient and Scalable MPC in the Honest Majority Setting

computation is tricky, and not easy to understand. -

Scalable and Unconditionally Secure Multiparty

. . . . C tati
m [f you are tired of reading and writing tedious proofs... omputation

Ivan Damgard and Jesper Buus Nielsen*

® [ you are afraid of unnoticed mistakes in the proof...
Dept. of Computer Science, BRICS, Aarhus University

we're here to help!
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Preliminary: Simulation-based Security for Multiparty Computation
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simulator

ideal world real world

Security Definition: there exists an algorithm that simulates the views of corrupted parties only from corruptedL’
parties' inputs and outputs.
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Verification Methodology

S| v e

protocol simulator

Methodology: try to transform the protocol into a simulator
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3-Party Addition Protocol

Alice Bob Charlie
Input: = Input: y Input: z
T 3% Zq
a<r+zx a4 >
b<—a+vy b , c+—b+z
r
wW—cCc—r
Output: w

Ideal functionality: f(x,y,z) = (LA x +y + 2)
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Simulator of Charlie

Charlie

Input: z

= 2

Tr < y

view: (b, 1)
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Technical Goal: to Transform the Protocol to the Simulator

G; (Protocol)

T <8 Zq

a<r—+
b a+vy
c—b+z
wé—c—rT

return (b, )

Simulator

Input: z,w

return (b, )
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Representation: Data-flow Graph

G; (Protocol) Simulator

r s Z, Input: z,w

a<r+x
b a+vy
+b

¢ T2 return (b,r)
wé—c—r

return (b, )
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Technical Goal: to remove the dependency on the honest parties’ inputs and outputs, while preserving the
distribution of the corrupted parties’ views during the transformation. |
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Proof Step |

G;1 (Protocol) Gy

T $$ Zq a <8 Zq
a<r+cx r<a—2%
b<—a+y b<—a+vy
c+—b+z c—b+z
wéc—r wc—r

return (b, )

return (b,r)
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Input: z,w

return (b,7)
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Proof Step 2

G;1 (Protocol)
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T $$ Zq

a<r+zx
b a+vy
c+—b+z
wW—Cc—T

return (b, )

a <8 Zq

r<—a—=zx
b a+vy
c—b+z
wc—r

return (b,r)

return (b, 7)
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Equivalent Production

Proof Step 3 O O O _Q

We can use the ideal functionality’s output, if the protocol is
correct, and the correctness is preserved during transformation.
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Proof Step 4
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“Good”’ transformations

Definition (equivalent rewriting)

Given an equivalent production (L, R) and a structured-

preserving mapping f: L — G, transform G to H by

substituting f (L) with R, and check if

* both G and H are acyclic;

* the number of each type of the random nodes are
preserved.
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Definition (vintage transformation)

A vintage transformation from G to H is an injection
from the nodes of H to G, for every assighment y of
the input and the output correct for G:

(i-iv) basic nodes and properties are preserved;

(v) the distribution of views is preserved;

(vi) H is correct w.r.t.y.

Definition (tail node elimination)

Transform G to H by eliminating a node without out-
edges.
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Definition (vintage transformation)

Soundness The transformation from G to H is a vintage

transformation, if there exists an injection h,, from

the nodes of H to G, so that for every assignment y
on the input and output (s.t. G is correct w.r.t. y):

/ (i-iv) basic nodes and properties are preserved;

(v) the distribution of views is preserved;

(vi) H is correct w.r.t. y.

Theorem (soundness)

Given a correct multiparty computation protocol 7, if, for
any corrupted party set, there is a vintage transformation
series from 1 to a simulator, then 7 is secure.
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Algorithm

best-first search, guided by a cost function

Theorem (soundness)

Given a correct multiparty computation protocol m, if
GAUV returns “secure” for any corrupted party set,
then 1 is secure.
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Evaluation

14001 o g X

m  Two cases from the literature
1200+

= BGW (Ben-Or, Goldwasser and Wigderson) protocols

1000
m  Binary-to-arithmetic secret sharing conversion
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Latency (s)
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Theorem (completeness for BGW protocols) or

Given a BGWV protocol m, GAuV can prove its security BoO 000 5007 2000 25007 2000° 85007 4600 14s00
Data-Flow Graph Size

for any corrupted party set in polynomial time, with

suitable cost function.
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On Generalization

m  Hybrid argument: a common proof technique to show the indistinguishability between two distributions.

®  For other more advanced perfectly secure protocols such as DN and ATLAS, the transformations between
adjacent hybrids can be mechanized as equivalent rewriting or tail node elimination.

®  Thus, GAuV can be used to prove the security of these protocols with sufficient amount of time.
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Summary

®  An automated verification framework for proving the security of multiparty computation protocols
m  Security strength: perfect security
®  Threat model: semi-honest adversary
m  Condition: correctness of the protocol w.r.t. a deterministic ideal functionality

m  Trusted code base: self

®m  Open-sourced at https://github.com/leefige/gauv
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