
On the Methodology of Three-Way Structured Merge in Version
Control Systems: Top-Down, Bottom-Up, or Both
Fengmin Zhua,d,1,2, Xingyu Xiea,2, Dongyu Fenga, Na Menge and Fei Hea,b,c,∗

aSchool of Software, Tsinghua University,
bKey Laboratory for Information System Security, MoE, China
cBeijing National Research Center for Information Science and Technology,
dMax Planck Institute for Software Systems,
eVirginia Tech,

A R T I C L E I N F O
Keywords:
Version control systems
Three-way merging
Structured merging
Shifted code

A B S T R A C T
Three-way merging is an essential component of version control systems. Despite the efficiency
of the conventional line-based textual methods, syntax-based structured approaches have demon-
strated benefits in improving merge accuracy. Prior structured merging approaches visit abstract
syntax trees in a top-down manner, which struggles to identify and merge shifted code generally.
This work introduces a novel methodology combining a top-down and a bottom-up visit of
abstract syntax trees, which manipulates shifted code effectively and elegantly. Especially, we
reduce the merge problem of ordered lists to computing a topological sort of strongly connected
components of the constraint graph. Compared with four representative merge tools in 40,533
real-world merge scenarios, our approach achieves the highest merge accuracy while being 2.5 x
as fast as a state-of-the-art structured merge tool.

1. Introduction
Thanks to the wide application of version control systems such as Git and SVN, three-way merging has become

an indispensable task in contemporary software development. A three-way merge scenario (base, left, right) consists
of three versions of a program, where the two variants left and right are both evolved independently, possibly by
different developers, from their ancestor base. A three-way merge algorithm integrates the changes made by the
variants and produces a merged version called a target. When the two variants (i.e., branches) introduce changes
that are contradicting, according to three-way merge principles, a conflict shall be reported, leaving the developers to
manually resolve them. The three-way merge principles conservatively describe whether the changes could be correctly
incorporated.

Unstructured merge is a mature merging approach that regards programs as a sequence of lines of plain text. Since
the context-free syntax is neglected, merge accuracy is yet unsatisfying—studies [19, 18] have shown the presence of
false conflicts (i.e., the conflicts that should have been avoided), which increases the user burden of manual resolution.
To enhance merge accuracy, structured merge, representing programs as abstract syntax trees (ASTs), has gained
significant research interest in recent decades [18, 17, 2, 1, 4, 27, 28]. A structured merge algorithm takes a set of
mappings between different program versions as input and computes a merged version as output. The mappings are
obtained by AST differencing (also known as AST matching) algorithms [8, 10, 7].

To compute a target AST, a structured merge algorithm needs to traverse the input ASTs (i.e., base, left, and right).
Prior approaches [18, 17, 2, 1, 4, 27, 28] all use a top-down order, which is quite natural and intuitive as it follows
the structure of ASTs. Such a top-down AST comparison is usually restricted to be level-wise—only AST nodes at the
same level (or depth) get compared, which makes it hard to detect if one piece of code is shifted into another, namely
shifted code [16]. To identify shifted code in a top-down manner, one could search for the largest common embedded
subtree. This problem, however, is known to be -hard and difficult to approximate for general cases [26]. A more

∗Corresponding author
hefei@tsinghua.edu.cn (F. He)

ORCID(s): 0000-0003-4219-0837 (F. Zhu); 0000-0002-2220-7294 (X. Xie); 0000-0002-8515-3975 (D. Feng);
0000-0002-4266-875X (F. He)

1Early revisions of this work were done when Fengmin Zhu was in Tsinghua University.
2Fengmin Zhu and Xingyu Xie contributed equally.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 1 of 21

On the Methodology of Three-Way Structured Merge

scalable approach is to employ syntax-aware looking ahead matching [16], but: looking ahead is only enabled for a
few types of AST nodes; the maximum looking-ahead distance is short for efficiency considerations. The work in [16]
focuses on the AST matching problem; how to correctly merge shifted code remains an issue.

Thinking oppositely, we find a bottom-up traversing order a better option. The key to detecting shifted code is to
allow node mappings across AST levels, which is natural and easier via a bottom-up manner. Meanwhile, top-down
merging cannot handle across-level mappings, which means bottom-up merging is needed as follow-up of the matching
phase. Sometimes, the bottom-up visit alone incurs redundant computations. As an extreme example, if left is the same
as base, meaning no changes are introduced on left, then by three-way merge principles, right introduces unique changes
and should be the target version—there is no need to further inspect any of their descendants as in a bottom-up manner.
We fix this issue by bringing in top-down merging.

Combining a top-down pruning pass and a bottom-up pass, we present a novel three-way structured merge
algorithm, where the trivial merge scenarios are processed in the former pass, and other nontrivial merge scenarios,
which may involve shifted code, are carefully operated in the latter pass. Because our algorithm is non-backtracking,
the time complexity is linear.

Like in JDime [18], we distinguish if the children list of an AST node can be “safely permuted” (i.e., the permutation
preserves semantics). If not, the list is called ordered (e.g., a sequence of statements) and a good merge algorithm
should preserve, as much as possible, the original occurrence order of the children in the merged versions, which we
call order-preservation. We reduce this problem into computing strongly connected components and a topological
sort of the directed acyclic graph formed by the components, which is solvable by linear-time graph algorithms, e.g.,
Tarjan’s algorithm [24].

We implemented our approach as a structured merge tool called Mastery1. To measure its usability and practicality
in real scenarios, we extract 40,533 merge scenarios from 78 open-source Java projects. We identified that shifted
code occurs in 38.54% merge scenarios, and conducted experimental comparisons with four representative tools:
JDime (structured), jFSTMerge (tree-based semistructured), IntelliMerge (graph-based semistructured), and GitMerge
(unstructured). Our results show: (1) Mastery achieves the highest merge accuracy of 82.90%; (2) Mastery reports
the fewest 9.33% conflicts and the fewest 7,057 conflict blocks, excluding radical IntelliMerge; (3) Mastery is about
2.5× as fast as JDime, and about 1.4× as fast as jFSTMerge. Our tool and evaluation data are publicly available:
https://github.com/thufv/mastery/.

To sum up, this paper makes the following contributions:
• We present a novel structured merge algorithm that visits ASTs in both a top-down and a bottom-up manner.

The top-down pruning pass avoids a mass of redundant computations. The bottom-up pass makes it possible to
handle shifted code elegantly and efficiently.

• We show that the proposed merging algorithm is linear-time.
• We conduct comprehensive experiments on real-world merge scenarios. Results show that Mastery is competi-

tive with state-of-the-art merge tools in the aspects of merge accuracy, the number of conflicts, and efficiency.
This paper is an extended version of a preliminary conference paper [29]. Compared to [29], this paper gives the

following new materials. First, we elucidate how we utilize and adapt the state-of-the-art matching algorithm, GumTree
[8], in order to make it better fit our merging algorithm. Second, we improve the ordered merging algorithm and report
new experimental results. Whereas [29] adopts a topological sorting algorithm for merging ordered lists, in this paper,
we compute strongly connected components in advance, trying to merge each component and concatenate the merged
results of components in a topological sort of the components. This improvement makes Mastery able to handle trivial
order-altering changes, e.g., swapping statements.
Organization of this paper In §2, we introduce necessary preliminaries. In §3, we give an bird’s-eye view of our
whole framework. Then, §4 describes the matching algorithm and §5 describes the merging algorithm. In the following,
we brief our implementation in §6 and detail our evaluation in §7. The related works are discussed in §8. Finally, we
make conclusions and propose future directions in §9.

1Merging abstract syntax trees in a reasonable way.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 2 of 21

https://github.com/thufv/mastery/

On the Methodology of Three-Way Structured Merge

2. Preliminaries
AST nodes In structured merging, programs are represented as abstract syntax trees (ASTs), parsed from source files.
An AST is a labeled rooted tree with four types of nodes, each annotated with the name of its production rule in the
grammar, called its label (lbl).

Node v ∶∶= Leaf (lbl, x) (leaf)
∣ Ctork(lbl, v1,… , vk) (k-ary constructor)
∣ UList(lbl, {v1,… , vn}) (unordered list)
∣ OList(lbl, [v1,… , vn]) (ordered list)

A leaf node represents a lexical token where the value x is the text of that token. A k-ary constructor node has exactly
k children as its arguments. For instance, an if-statement—consisting of a Boolean condition, a true branch, and a
false branch—is represented as a 3-ary constructor node. An arbitrary number of children is allowed in a list node,
which is further divided into unordered—children can be safely permuted—and ordered (the opposite). For instance,
a class member declaration list is unordered, while a statement list is ordered. The children of an unordered list node
are denoted by a set {v1,… , vk}, while the children of an ordered list node are denoted by a list [v1,… , vk] ([] for an
empty list). In case of merge conflicts, we introduce conflicting nodes in target ASTs. We assume that conflict nodes
can never appear in any input AST (i.e., base, left, or right), as any previously reported conflicts should have already
been resolved at the moment a new merge process is requested.
AST Matching A merging algorithm relies on a set of mappings between different versions of the programs to
compute the merged version. The set of mappings between two ASTs T1 and T2 are represented by a matching set
 = {(ui, vi)}i, where each pair (ui, vi) consists of two nodes ui ∈ T1 and vi ∈ T2. Intuitively, two mapped nodes
are likely to be the same node in different versions: if we transform T1 to T2 by inserting and deleting nodes as few as
possible, ui will probably become vi along the transformation. The mappings shall be injective—two nodes cannot be
matched to the same node on the other AST simultaneously. Moreover, the matched nodes shall have the same label.
Definition 1 (Shifted code). Given two mappings (u′, v′), (u, v) ∈ , if u is a child of u′, whereas v is not a child (i.e.,
direct descendant) but a later descendant of v′, then (u, v) is said a shifted mapping. Meanwhile, the code fragment
corresponding to the subtree of v is called a shifted code.
For example, on the merge scenario shown in Fig. 1: in left, the code fragment of the InfixExpr is a shifted code and
is shifted into a CastExpr; in right, the code fragment of the ExprStmt is a shifted code and is shifted into a ForStmt.

Block

ExprStmt

Assignment

x = CastExpr

InfixExpr

x + y

Block

ExprStmt

Assignment

x = InfixExpr

x + y

Block

ForStmt

ExprStmt

Assignment

x = InfixExpr

x + y

left base right

Figure 1: A merge scenario with shifted code. (Shifted mappings are depicted as dashed arrows.)

Three-way Merge Principles A three-way merge algorithm must abide by a couple of principles, as presented in
Table 1. To avoid repetition, the dual cases of rows 1, 3, and 4 are not displayed. The first two rules are applicable to
all types of nodes. If a node is modified by exactly one of the variants, then the change is unique and itself gives the
target (row 1). If a node is concurrently modified by both variants inconsistently, a conflict is reported, as the algorithm

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 3 of 21

On the Methodology of Three-Way Structured Merge

Table 1
Three-way merge principles (dual cases omitted).

Type Version base Version left Version right Target T Explanation

1 Node e e e′ e′ left-change
2 Node e eL eR conflict inconsistent change
3 List e ∈ base e ∉ left e ∈ right e ∉ T left-deletion
4 List e ∉ base e ∈ left e ∉ right e ∈ T or conflict left-insertion

has no adequate information to decide which one to take (row 2). If the modifications are equal, then of course these
changes are consistent and thus not conflicting. The last two rules are applicable for only (ordered and unordered) list
nodes. If an element of base presents in exactly one of the variants, then it is regarded as being removed and will be
excluded from the target list (row 3). In contrast, if a new node is introduced in exactly one of the variants, it will be
inserted into the target list (row 4). For ordered lists, conflicts may occur if the insertion position is ambiguous. For
unordered lists, the insertion position is arbitrary and thus not conflicting.

3. Framework Overview
Fig. 2 presents the main process and the workflow of Mastery. The tree matcher and the tree merger only manipulate

ASTs produced by a parser, and thus are language-agnostic. To enable structured merging for a certain programming
language , a parser that builds ASTs from source code written in , and a pretty printer that outputs source code from
ASTs are required to be integrated into the framework.

Parser of 

baseleft right

Tree matcher Tree merger Printer of 

target

ASTs matching sets target AST

Figure 2: Workflow of our merge framework Mastery.

The framework takes three source files (they should be in the same language) as input, which forms a three-way
merge scenario, and outputs another file as the merge result. The workflow consists of four sequential steps:

1. A parser translates the three source files into three ASTs, referred to as base, left and right.
2. A tree matcher (§4) compares and establishes mappings between the three ASTs. In our three-way tree matching

algorithm, base is compared with left and right respectively, and each produces a matching set L and R.
The tree matching algorithm is an adaption of GumTree [8].

3. A tree merger (§5) then applies amalgamation on ASTs with the help of L and R, and builds a target
AST according to three-way merge principles. The algorithm is composed of two passes: the top-down pruning
pass identifies trivial merge scenarios and processes them in advance; the bottom-up merging pass processes
the remaining non-trivial merge scenarios using tree amalgamation algorithms. In case conflicts occur, special
conflicting nodes are created to record the conflicting blocks.

4. A pretty printer traverses the target AST and outputs source code into a file. If the target AST contains conflict
nodes, they will be displayed using standard conflicting markers (as in GitMerge).

4. Matching Algorithm
This section presents our tree-matching algorithm. We adapt GumTree [8] to compute the set of mappings between

two ASTs . We choose GumTree because it can search for cross-level mappings, which enables the detection of shifted
code. We will first review its main steps in §4.1 and then introduce our adaptions in §4.2.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 4 of 21

On the Methodology of Three-Way Structured Merge

When it comes to a three-way merge scenario, we have in total three ASTs to compare: between which pairs shall
we perform the underlying AST matching algorithms such as GumTree? Prior works [18, 17, 16] decided to do it
between each pair of them, but we find this mechanism can sometimes lead to anti-intuitive results. To tackle this
issue, we will propose a revised mechanism in §4.3.
4.1. GumTree Overview

In a nutshell, the GumTree algorithm traverses the two input ASTs and searches for three kinds of mappings
between them. An edit script can be deduced from the mappings using algorithms such as [6]. However, this step is not
needed in our merge framework. To identify mappings, GumTree first performs a top-down visit of ASTs in decreasing
height, finding isomorphic (equal) subtrees between them, each of which forms an anchor mapping. Then, it performs
a bottom-up visit for identifying mappings between yet unmatched nodes. A container mapping is established if the
two nodes have a large number of descendants (greater than a threshold) being matched, or, intuitively, being “quite
similar”. Once a container mapping is found, recovery mappings are then established (e.g., using the RTED algorithm
[20]) between some of their unmatched descendants.

GumTree is capable of identifying cross-level mappings, making the detection of shifted code available. Cross-level
mappings can be established in both passes: (1) in the top-down pass, anchor mappings are established between two
subtrees of the same height – not the same depth – thus cross-level isomorphic subtrees are probably regarded as
matches; (2) in the bottom-up pass, container mappings are established if the two subtrees are similar, and again their
depths may differ; the situation is the same for recovery mappings.
4.2. Our Adaption: Monotone Matchings

Classical unstructured merging approaches [15] exploit line-based matching. The matching task is to compute
the longest common sequence of two sequences of lines, where a common element in the longest common sequence
corresponds to a mapping. Thus, the matching between sequences must be non-crossing, i.e., the linear order of a
sequence is preserved on the matching. As a natural extension of this non-crossing property, the mappings between
trees ought to preserve the ancestor-descendant relationship. This is what we call monotone.
Definition 2 (Monotonicity). A matching set  is monotone if the following holds: for every (s, t) ∈ , if there
exists u ∈ s (u is a descendant of s) such that (u, v) ∈  for some node v, then v ∈ t (v is a descendant of t).

To compute a monotone matching set, we use an ad-hoc filter strategy. Every time a new mapping is identified, we
check if the monotonicity property is preserved by definition. If it is preserved, the new mapping is accepted, otherwise,
rejected. Noting the fact that “for two given nodes x and y of a tree T , x is an ancestor of y if and only if x occurs
before y in the preorder and after y in the postorder”, the monotonicity (Def. 2) could be described by the order of pairs
of numbers. Thus, by precomputing the preorder and postorder of the nodes and caching previously-computed results,
the checking procedure takes only constant time. In other words, it does not increase the worst-case time complexity
of GumTree.
4.3. Which ASTs to Compare?

Given a three-way merge scenario (base, left, right), which pairs of ASTs should be compared? A trivial solution
(used by [18, 17, 16]) might be: to compare each pair of them, i.e., (base, left), (base, right), (left, right). Each tree
matching problem yields a matching set, denoted by BL, BR and LR. This looks like a reasonable method at
first sight, however, we recognize an exhibition of anti-intuitive circumstances. For example, it could be the case that
there exist nodes b ∈ base, l ∈ left and r ∈ right such that (b, l) ∈ BL and (l, r) ∈ LR, meanwhile (b, r) ∉ BR.
Typically, it is expected that the matching relation is transitive, say given (b, l) ∈ BL and (l, r) ∈ LR, we should
also have (b, r) ∈ BR. However, the above case violates the transitivity.

Fig. 3 presents a merge scenario (base, left, right). Neglecting the mappings, one can recognize that both Field1
and Field2 are deletions – by row 3 of Table 1. Therefore, the expected merge result is simply a class definition
without any field. We now take a closer look at the established mappings: v1 is matched with v3 (isomorphic), and
v3 is matched with v4 (though not isomorphic, they are mapped because of their high similarity). However, v1 is not
matched with v4, which violates the transitivity of the matching relation. Instead, we see v2 is matched with v4, as
they are isomorphic. In the subsequent AST amalgamation pass, we have to answer a tricky question: shall we perform
merging on the merge scenario (v1, v3, v4)? If yes, then by row 1 of Table 1, Field2 gives the merge result of the
above merge scenario. Later, Field2 will be included – however, it should be regarded as a deletion. If no, then there
F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 5 of 21

On the Methodology of Three-Way Structured Merge

ClassA
base

MemberList

Field1

v1
Field2

v2

ClassA
left

MemberList

Field1

v3

ClassA

right

MemberList

Field2

v4

Figure 3: A merge scenario (base, left, right) with established mappings (dashed or dotted lines). The red dotted line shows
a mapping established by comparing left and right. Assume the similarity (measured by a heuristic cost function) between
Field1 and Field2 exceeds a given threshold.

would be no way to figure out that Field1 is a deletion. In either case, the amalgamation algorithm will not give the
expected merge.

To resolve the above dilemma, we propose to exclude the comparison between left and right. In the above example,
that means the mapping (v3, v4) (red dotted line) no longer exists and by three-way merge principles, the expected merge
will be successfully produced. In this way, (b, l, r) is regarded as a “proper” merge scenario (so that amalgamation is
performed on it) if and only if (b, l) ∈ BL and (b, r) ∈ BR. Our rationale is that, since the two variants both evolve
from base, they each should be compared with base for identifying the changes they made. Conversely, the two variants
are neither evolved from each other. In reality, they are usually developed independently, and sometimes the developers
may even not know each other (common in open-source projects). Thus, the two variants are not that related. As the
essence of the three-way merge is to integrate changes – rather than to recognize differences – we find it unnecessary
to compare left and right. One may concern that the above strategy can sometimes miss a mapping that should be
established between the two variants (since they are not compared to each other at all). To identify such mappings and
to preserve the transitivity in the meantime, we could additionally compare and establish mappings between the nodes
of the two variants that are not matched with any node of base.

5. Merging Algorithm
Given a three-way merge scenario (base, left, right), our merging algorithm accepts two matching sets from the

matching algorithm as input—L the matches between base and left, and R the matches between base and right.
The algorithm generates a new tree, namely a target AST, as the merge result. Merging is performed on the matched
nodes only, as unmatched nodes are assumed to have no relation. In the case of three-way merging, the two variants
should match the base version. Formally, a merge scenario (b, l, r) is said proper if (b, l) ∈ L and (b, r) ∈ R. The
merge algorithm only needs to manipulate proper merge scenarios. Non-proper merge scenarios can be safely omitted
because they are regarded as deletions and thus do not appear in the target.

Fig. 4 presents the high-level workflow of our merge algorithm. It consists of a top-down pass followed by a
bottom-up one. In the top-down pass (see §5.1 for details), input ASTs get traversed in pre-order, and any trivial merge
scenario—any two of the three versions are equal—is processed immediately. Meanwhile, we collect other non-trivial
proper merge scenarios in the list S. In the bottom-up pass, the merge scenarios in S get processed in the reverse order,
i.e., in post-order. Since matched nodes have the same label, the three versions in a proper merge scenario must be
homogeneous—they must all be leaf nodes, constructor nodes, unordered list nodes, or ordered list nodes.

A challenging problem in the bottom-up pass is that: a sub-scenario (b, l, r) may not be proper, say b and l do not
match. Even though it is rational to assume b matches some descendant of l (or else we simply report a conflict), which
happens when l has shifted code. We encode this condition as a relevant-to relation: u is relevant to v, written u ≃ v,
iff there exists a descendant w ∈ v such that u matches w. With this notion, the assumption we make on a sub-scenario
(b, l, r) is given by b ≃ l ∧ b ≃ r. Merging such a sub-scenario requires us to take shifted code into account. We will
present this algorithm in §5.3.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 6 of 21

On the Methodology of Three-Way Structured Merge

Case 1: Leaf

Case 2: Constructor

Case 3: Unordered List
(Unordered Merging Alg. 3)

Case 4: Ordered List
(Ordered Merging Alg. 4)

Shifted Code Merging (Alg. 2)

Bottom-up pass

target AST

Top-down
pass (Alg. 1) trivial merge scenarios processed

non-trivial
merge scenarios

merge by
node type

invoke

Figure 4: High-level workflow of our merge algorithm.

Algorithm 1: Top-down pruning pass
1 Function TopDownVisit(b: Node):
2 S ← [];
3 if ∃l ∈ left, r ∈ right ∶ (b, l) ∈ L ∧ (b, r) ∈ R then
4 if b = r then (b) ← l; return [];
5 if b = l or l = r then (b) ← r; return [];
6 S += (b, l, r);
7 foreach child c of node b do
8 S ++= TopDownVisit(c);
9 return S;

The merge result of the merge scenario (b, l, r) is recorded in a map  so that the algorithm can query it later on
demand. Instead of using the entire merge scenario (b, l, r) as the index (or key) for the map , realizing that any node
b of base appears in at most one merge scenario (by the injectivity of the matching sets), we simply use b as the index.
In the end, the target AST of the top-most merge scenario (base, left, right) is obtained by querying (base).
5.1. Top-Down Merging

In the top-down pass, we visit base in a descendant recursive manner by invoking TopDownVisit (Alg. 1). This
function returns all non-trivial merge scenarios that need processing later in the bottom-up pass. We use a list S to
collect them. For short, we use two notations: S += e for appending an element e to S, and S ++= S′ for appending all
elements in S′ to S. Upon traversing, if any trivial merge scenario is encountered, we immediately store the target AST
in  and prune any further visit of its sub-scenarios by returning an empty list (lines 4 – 6). Otherwise, we proceed to
collect merge scenarios recursively (lines 8 – 9).
5.2. Two Base Cases in Bottom-up Merging

The first case, all nodes are leaf nodes, is the base case of our merge algorithm. This case is straightforward by
three-way merge principles: we either take the only-changed variant as the target (by row 1 of Table 1) or report a
conflict due to the inconsistent changes (by row 2).

The second case, merging constructor nodes of the same label and arity, gives a constructor node of that label and
arity too, and each child node is recursively merged from the sub-scenarios formed by the children at the corresponding
index. Merging list nodes gives list nodes too, and it contains elements recursively merged from certain sub-scenarios
drawn from the elements in the input lists (see §5.4 and §5.5 for details).

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 7 of 21

On the Methodology of Three-Way Structured Merge

Algorithm 2: Shifted Code Merging
1 Function IssueShifted(b: Node, l: Node, r: Node):
2 let l′, r′ be nodes s.t. (b, l′) ∈ L, (b, r′) ∈ R;
3 if l′ = l ∧ r′ = r then return (b);
4 if l′ ≠ l ∧ r′ = r then return l[(b)∕l′];
5 if r′ ≠ r ∧ l′ = l then return r[(b)∕r′];
6 if l[(b)∕l′] = r[(b)∕r′] then return l[(b)∕l′];
7 return Conf lict(l, r);

5.3. Shifted Code Merging
Shifted code may exhibit in any type of node (except leaf node) in merge scenarios, which indicates the method of

merging shifted codes is a really important utility. Alg. 2 presents a unified algorithm for dealing with shifted code. It
requires b ≃ l ∧ b ≃ r. Merging is performed according to where the shifted code involves:

(no shifting) If (b, l, r) is proper, then we simply query  (line 3).
(left-shifting) If b matches r but not l, then there exists a l′ such that it is shifted into l. To integrate this shifting, we
first make a copy of l and replace l′ with the merge result of (b, l′, r′) i.e., (b) (line 4). The notation u[w∕v] gives
an updated tree by replacing a subtree v with w on u.
(right-shifting) Line 5 is symmetric to the above case.
(consistent-shifting) If both variants involve shifted code, the only circumstance we can safely merge is when they
yield the same result (line 6).
(inconsistent-shifting) Otherwise, report a conflict (line 7).

Consider the example in Fig. 1. When merging the merge scenario consisting of the three Assignments, CastExpr
from left, InfixExpr from base and InfixExpr from right form the arguments b, l, r in Alg. 2. The result is computed
by taking the subtree of CastExpr and replacing its subtree of InfixExpr with the target one (by line 4). In merging
the top-most merge scenario, the result is computed from the subtree of ForStmt by replacing its child ExprStmt with
the target of ExprStmts (by line 5). In this way, the shifted changes made by the two variants are integrated.
5.4. Unordered Merging

Let B, L, and R respectively be the set of elements of three unordered list nodes that form a merge scenario. The
goal of unordered merging is to compute a set of elements T—without worrying about the order—that should appear
in the target list. These elements are classified as follows:

(shifting) If an element b ∈ B satisfies b ≃ l ∧ b ≃ r for some l ∈ L and r ∈ R, then the merge result is obtained by
invoking IssueShifted(b, l, r).
(left/right-insertion) If an element of L or R is not related to any element of B, then by row 4 of Table 1 it is an
insertion.
(left/right-deletion-change conflict) If an element b satisfies, for example (dual case is similar), b ≃ r for some r ∈ R,
then it is a left-deletion (thus not included in T) when b = r; and a left-deletion-change conflict when b ≠ r.

The above is realized as Alg. 3: First, traverse the elements in B and collect any shifting (line 4) or left-deletion-
change conflict (line 7, right-deletion-change conflict is symmetric) in T . Meanwhile, mark every relevant left/right
element as “visited” (lines 6 and 9). Then, all elements yet not marked must be left/right-insertions: thus insert them
into T (line 10).

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 8 of 21

On the Methodology of Three-Way Structured Merge

Algorithm 3: Unordered merging
1 Function Unordered(B: Set, L: Set, R: Set):
2 T ← ∅;
3 foreach b ∈ B do
4 if ∃l ∈ L, r ∈ R ∶ b ≃ l ∧ b ≃ r then
5 T ← T ∪ {IssueShifted(b, l, r)};
6 mark l, r as “visited”;
7 else if ∃l ∈ L ∶ b ≃ l then // right case is symmetric
8 if b ≠ l then T ← T ∪ {Conf lict(l, ")};
9 mark l as “visited”;

10 T ← T ∪ {e ∣ e ∈ L ∪ R, e is not “visited”};
11 return T ;

5.5. Ordered Merging
Merging ordered lists is more complex than merging unordered lists in that the elements of the target list should be

in an order preserving the original occurrence order of associated elements in the merge scenario; and it is necessary
to decide whether such an order uniquely exists—if not, to fit the merge algorithm into a conservative setting, conflicts
shall be reported as well. For example, Fig. 5 depicts a merge scenario where the three ordered lists B, L, and R each
represent the statements inside a block. For clearance, we display the elements of each list in a linked chain rather
than an AST. A dashed edge between two nodes indicates they are matched. By three-way merge principles, Stmt1
and Stmt5 should be included in the target list T : since Stmt1 precedes Stmt4 in B, stmt1 must also precede Stmt5
in T . Next, both Stmt2 and Stmt3 should be included in T as they are insertions. However, their insertion order is
ambiguous: no information can tell if Stmt2 should precede Stmt3 or the other way around; indeed, we just know
either must come in between Stmt1 and Stmt5. Due to the ambiguous insertion order, a conflict has to be reported.

Stmt1
B

Stmt1
L

Stmt1
R

Stmt1
T

Stmt2 Stmt3 conflict

Stmt4 Stmt4 Stmt5 Stmt5

Figure 5: A conflicting merge scenario of three statement-lists (B,L,R) with the target T . A dashed edge between two
statements indicates they are matched.

In some extreme cases, strictly preserving the order is not desired, particularly, when the change introduced is just
permutating the order. For example, in Fig. 6, Stmt1 and Stmt2 are swapped in L. By three-way merge principles,
since only L introduces a swap-change, the target T should accept this swap-change.

Stmt1
B

Stmt2
L

Stmt1
R

Stmt2
T

Stmt2Stmt1 Stmt2 Stmt1

Figure 6: A swap-change merge scenario of three statement-lists (B,L,R) with the target T . A dashed edge between two
statements indicates they are matched.

Order-preserving Before presenting the merge algorithm, we first need a formal interpretation of “preserving the
original occurrence order”. Since the occurrence order is a partial order relation, it is natural to regard the three ordered
F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 9 of 21

On the Methodology of Three-Way Structured Merge

Algorithm 4: Ordered merging
1 Function Ordered(B: List, L: List, R: List):
2 Φ ← GenConstraints(B, L, R);
3 Represent Φ as a directed graph GΦ = ⟨V ,E⟩;
4  ← Tarjan(GΦ) ; /* a topological sort of SCCs */
5 for i ← 2..|| do
6 if there is no edge (u, v) ∈ E s.t. u ∈ [i − 1] ∧ v ∈ [i] then

/* multiple topological sorts */
7 return “conflict” ;
8 T ← [];
9 for i ← 1..|| do

10 if �B|[i] ≠ �L|[i] ∧ �B|[i] ≠ �R|[i] ∧ �L|[i] ≠ �R|[i] then
/* three unique constraints in a SCC */

11 return “conflict” ;
12 if �B|[i] = �L|[i] then X ← R ;
13 else if �B|[i] = �R|[i] then X ← L ;
14 else X ← L ; /* �L|[i] = �R|[i] */
15 foreach u in the order �X|[i] do T += u ;
16 return T ;

lists in the merge scenario (B,L,R) as three ordered sets ⟨B,⊲B⟩, ⟨L,⊲L⟩ and ⟨R,⊲R⟩. The occurrence order relation
is denoted by ⊲X (for X ∈ {B,L,R}), formally defined as X[i] ⊲X X[j] ⟺ i < j.

Let S be the set of elements that should appear in the target list T , computed by Unordered(B, L, R). In §5.4,
we classify these elements into: shifting, left/right-insertion, and left/right-deletion-change conflict. Each element is
computed from certain elements in the input merge scenario. For example, if t∗ ∈ S is a left-insertion, then t∗ is a
copy of some l∗ ∈ L. We encode their relationship as partial functions �B ∶ B ⇀ T , �L ∶ L ⇀ T and �R ∶ R ⇀ T .
For the above example, we let �L(l∗) = t∗.
Definition 3 (Order-preserving). We say an ordered list T is order-preserving w.r.t. (B,L,R) if T is a permutation
of S = Unordered(B, L, R) such that �B , �L, and �R are monotone. A partial function f ∶ X ⇀ Y is said monotone
if for every x1, x2 ∈ X such that f (x1) and f (x2) are both defined, x1 ⊲X x2 entails f (x1) ⊲Y f (x2).
In the above, we use the monotonicity condition to formalize our requirement of “preserving the original occurrence
order”.
Algorithm The main goal of the algorithm (Alg. 4) is to solve an order-preserving list and to decide the uniqueness
of such lists. We compute an order-preserving list via constraint-solving—the constraints encode the monotonicity
condition for the target list T by Def. 3. Technically each constraint has the form e1 ⊲ e2, meaning “e1 precedes e2 in
T ”. We propose an algorithm GenConstraints (Alg. 5) to produce them by traversing the elements of B, L, and R
in their occurrence order. We explain its correctness by the following lemma:
Lemma 1. Given a merge scenario (B,L,R) of three ordered lists. If Φ is the constraint set returned by Alg. 5, then
the set of satisfying solutions to Φ is equivalent to the set of order-preserving lists, i.e., every satisfying solution of Φ
is an order-preserving list and vice versa.

PROOF. Let T be an order-preserving list. The monotonicity requirement is translated into the following logical
formula:

Θ = {�B(B[i]) ⊲T �B(B[j]) ∣ i < j, �B(B[i]) and �B(B[j]) are defined}
∪ {�L(L[i]) ⊲T �L(L[j]) ∣ i < j, �L(L[i]) and �L(L[j]) are defined}

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 10 of 21

On the Methodology of Three-Way Structured Merge

Algorithm 5: Constraints generation
1 Function GenConstraints(B: List, L: List, R: List):
2 foreach b ∈ B do
3 if ∃l ∈ L, r ∈ R ∶ b ≃ l ∧ b ≃ r then
4 t ← IssueShifted(b, l, r);
5 �B ← �B ∪ {b ↦ t}, �L ← �L ∪ {l ↦ t}, �R ← �R ∪ {r ↦ t};
6 mark l, r as “visited”;
7 else if ∃l ∈ L ∶ b ≃ l then
8 t ← IssueShifted(b, l, r);
9 �B ← �B ∪ {b ↦ t}, �L ← �L ∪ {l ↦ t};

10 mark l as “visited”;
11 else if ∃r ∈ R ∶ b ≃ r then
12 t ← IssueShifted(b, l, r);
13 �B ← �B ∪ {b ↦ t}, �R ← �R ∪ {r ↦ t};
14 mark r as “visited”;
15 foreach l ∈ L, l is not “visited” do
16 �L ← �L ∪ {l ↦ l};
17 foreach r ∈ R, r is not “visited” do
18 �R ← �R ∪ {r ↦ r};
19 Φ ← ∅;
20 for X ∈ {B,L,R} do
21 for i ∈ 2 to |X| do
22 Φ ← Φ ∪ {�X(X[i − 1]) ⊲ �X(X[i])};
23 return Φ;

∪ {�R(R[i]) ⊲T �R(R[j]) ∣ i < j, �R(R[i]) and �R(R[j]) are defined}
Therefore, it suffices to show:

⋀

�∈Θ
� ⟺

⋀

'∈Φ
'. (1)

On the one hand, by comparing lines 20 – 22 of the algorithm (i.e., the definition of Φ) to the definition of Θ, we
observe that Φ ⊆ Θ, which implies

⋀

�∈Θ
� ⟹

⋀

'∈Φ
'. (2)

On the other hand, Θ is the transitive closure of Φ over the relation ⊲T , we thus have
⋀

'∈Φ
' ⟹

⋀

�∈Θ⧵Φ
�,

which implies
⋀

'∈Φ
' ⟹

⋀

�∈Θ
�. (3)

By Eq. (2) and Eq. (3), we see Eq. (1) holds. □

Now let us move back to Alg. 4. Let Φ be the set of constraints returned by Alg. 5 (line 2). We represent the
constraints as a directed graph (line 3) GΦ = ⟨V ,E⟩, where: (1) the set of vertices are the elements of Unordered(B,

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 11 of 21

On the Methodology of Three-Way Structured Merge

L, R), i.e., V = S, and (2) for each constraint (e1 ⊲ e2) ∈ Φ, let (e1, e2) ∈ E be an edge of GΦ. It is well-known from
graph theory that: there is a one-one correspondence between a topological sort of GΦ and a satisfying solution of Φ,
which further implies that: there is a one-one correspondence between an order-preserving list and a topological sort
of GΦ.

The first algorithm that comes to mind is perhaps a topology sort algorithm such as Kahn’s algorithm [14]. However,
it is too strict to handle cases like Fig. 6. A more flexible way is to compute strongly connected components (SCCs)
first, try to merge each SCC on its own, then try to find a unique topological sort of the directed acyclic graph formed
by the SCCs.

Alg. 4 shows the details. In line 4, we facilitate Tarjan’s strongly connected components algorithm to compute
SCCs. Contracting each SCC as a supernode, we get a component graph, which is directed acyclic. As a byproduct,
Tarjan’s algorithm also produces a topological sort of component graph. We store the computed topological sort of
SCCs as a one-based list in .

Lines 5 – 7 check if the topological sort is unique, which is equivalent to that there is an edge between each pair of
adjacent SCCs in the component graph. And, this is equivalent to check that whether there are two connected nodes
respectively from the adjacent SCCs (line 6, highlighted).

Then we try to merge each SCC and concatenate the merged results sequentially in T (lines 8 – 15). We use �B|[i]to denote the constraints generated for SCC [i] from B. The notations for L and R are similar. Lines 10 – 11 consider
a case that is too complicated to deal with: the order constraints generated from the three versions are pairwise distinct.
We conversely report a conflict for this case. If it is not the case, we can merge the SCC along the order constraints
of one version. Lines 12 – 14 choose which version to obey: (1) if the constraints of B and L are equal, which means
only R possibly introduces changes, we choose R (line 12); (2) symmetrically, if the constraints of B and R are equal,
which means only L possibly introduces changes, we choose L (line 13); (3) if L and R introduce the same changes,
we adopt the changes (line 14). The concatenating operation takes place in line 15. When the concatenation finishes
and no conflict has been found, line 16 returns the target list.

The ordered merge algorithm is linear because both Tarjan’s algorithm and the generation of constraints are linear.
Moreover, the other algorithms mentioned before are also linear, thus:
Theorem 1. The time complexity of the entire structured merge algorithm is linear (to the size of the input merge
scenario).

6. Implementation
We implemented the proposed approach as a structured merge framework, Mastery, written in Java. This framework

consists of four modules:
1. a parser that translates input source files into ASTs;
2. a tree matcher that generates mappings between different program versions, using an adapted GumTree [8]

algorithm;
3. a tree merger that computes the target AST, following the algorithms presented in §5;
4. a pretty printer that outputs the formatted code from the merged AST.
Mastery currently supports merging Java programs. We rely on JavaParser2, a mature open-source parsing library

for the Java language, to build ASTs from source code and pretty print Java source code from ASTs. To integrate with
our merge algorithm, we convert the ASTs generated by JavaParser into our AST data structure (defined in §2).

7. Evaluation
To measure the usability and practicality of our approach in real-world scenes, we extract 40,533 merge scenarios

from 78 Java open-source projects hosted on GitHub, and then conduct a series of experimental evaluations to answer
the following research questions:

2https://javaparser.org/

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 12 of 21

https://javaparser.org/

On the Methodology of Three-Way Structured Merge

RQ1: How often does shifted code occur in real-world merge scenarios?
RQ2: What is the merge accuracy of Mastery when compared to state-of-the-art merge tools?
RQ3: How many merge conflicts are reported by these tools?
RQ4: What is their performance from the perspective of runtime?

7.1. Experimental Setup
To select realistic and representative merge scenarios as our evaluation dataset, we seek the top 100 most popular

open-source Java projects hosted on GitHub3; and then exclude any non-software-project (e.g., tutorials). On the
remaining 78 projects, we extract merge scenarios via an analysis of their commit histories:

1. Using standard git commands, we extract all merging commits with its two parents, and their base commits.
The corresponding Java source files in the three version commits are collected as a merge scenario. In terms of
three-way merge, the one in the base commit is the base version, and the source files in the two parent commits
are the variants (i.e. left and right) version. The corresponding source file in the merge commit itself is marked
as the expected version and will be used as the ground truth.

2. Usually, not all source files are changed from one version to another – only a few are affected. Furthermore, given
the base, left and right versions of a source file, if any of the two are equivalent, by three-way merge principles,
we immediately know the target version without performing the merge. This kind of merge scenarios is not worth
evaluating, as any merge approach should produce the correct output. To better examine the differences between
the merge tools, we instead remove this kind of merge scenarios, that is, we only collect the three versions of
a source file that are pairwise distinct. To achieve this, we use git diff to distinguish whether two files are
distinct.

3. Some source files cannot be parsed correctly, e.g. they include unresolved conflicts. We remove them as
structured approaches assume the input files must have valid syntax (checked by JavaParser).

Further, we evaluate Mastery by comparing with four state-of-the-art merge tools:
• JDime [18], a state-of-the-art structured merge tool,
• JFSTMerge [4], an improved version of FSTMerge, a well-known tree-based semistructured merge tool,
• IntelliMerge [23], a refactoring-aware graph-based semistructured merge tool, and
• GitMerge, the default merging algorithm in Git.
All experiments were conducted on a workstation with AMD EPYC 7H12 64-Core CPU and 1TB memory, running

Ubuntu 20.04.3 LTS.
7.2. Frequency of Shifted Code (RQ1)

In this evaluation, we aim to understand how often shifted code presents in practice. To calculate the frequency of
shifted code, we use the state-of-the-art AST differencing tool, GumTree [8], to compute matchings among base, left,
and right. Note that we don’t need any merge tool for this evaluation. Then, on the computed matchings, we count the
number of shifted mappings (i.e. shifted code) according to Def. 1.

Fig. 7 presents how many merge scenarios in each studied project involve shifted code, meaning at least one shifted
mapping is detected. Among the 40,533 merge scenarios, we find 15,620 merge scenarios involve shifted code—the
frequency is 38.54%. In those merge scenarios, we detect 90,982 shifted mappings—on average 2.24 shifted mappings
per merge scenario.

3According to the following list, until July 12, 2021:
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 13 of 21

https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md

On the Methodology of Three-Way Structured Merge

Figure 7: Distribution of shifted code in each project. The projects are sorted by their number of merge scenarios in
ascending order. We split them into two subfigures according to if the number of merge scenarios is less than 500 (left) or
not (right).

7.3. Taxonomy of Results
To understand the behavioral performance of the merge tools, we classify a merged result (for each merge scenario

of each tool) into one of the following four categories:
• expected: the merged file and the expected version (the ground truth) are syntactically equivalent, i.e., their ASTs

are isomorphic to each other (allowing permutations of elements in an unordered list node);
• unexpected: the merged file is conflict-free and is nonequivalent to the expected version;
• conflicting: there is at least one conflicting block in the merged file;
• failed: either the tool crashes or the execution exceeds the time limit 300 s.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Mastery JDime jFSTMerge IntelliMerge GitMerge

expected unexpected conflicting failed

Figure 8: Distribution of the merging results.

Table 2 shows the distribution of the results of the five tools. The percentage of each kind of result is visualized in
Fig. 8. JDime and IntelliMerge failed on a considerable number of scenarios, mainly caused by their implementation
bugs. IntelliMerge represents each program version as a program element graph, and adopts a radical merging algorithm
to construct the merged graph, which may violate the three-way merge principles when a deletion happens. Thus,
it tends to produce more unexpected results. For GitMerge, only 1.95% results are unexpected. To understand this
phenomenon, we have to notice that all projects use GitMerge as default. If GitMerge does not report any conflict, the

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 14 of 21

On the Methodology of Three-Way Structured Merge

Table 2
Distribution of the merged results.

Tool Expected Unexpected Conflicting Failed

Number Accuracy Number Percentage Number Percentage Number Percentage

Mastery 33602 82.90% 3148 7.77% 3782 9.33% 1 0.00%
JDime 32200 79.44% 2406 5.94% 4538 11.20% 1389 3.43%

jFSTMerge 30062 74.17% 3837 9.47% 6626 16.35% 8 0.02%
IntelliMerge 9777 24.12% 24553 60.58% 3442 8.49% 2761 6.81%
GitMerge 30643 75.60% 791 1.95% 9099 22.45% 0 0.00%

merged codes will usually become the ground truth in our evaluation, without being reviewed by the developers. Thus,
the expected version is a kind of biased ground truth in favor of GitMerge. This finding is consistent with a previous
work [23].
7.4. Merge Accuracy (RQ2)

In this evaluation, we study the merge accuracy, calculated as the percentage of expected results, of the five tools
on our dataset. As shown in Table 2, Mastery achieves the highest accuracy of 82.90% among all tools. Compared
to JDime, Mastery gains 3.46% higher accuracy. Among the 2,028 scenarios where Mastery’s results are expected
whereas JDime’s are not, we find 49.65% involves shifted code—11.11% higher than the overall frequency.

String value =
invocation.getAttachments()
.get(Constants.
INVOCATION_NEED_MOCK);

Base version

String value =
invocation.getAttachments()
.get(Constants.
INVOCATION_NEED_MOCK);

Left version
String value =

(String) invocation.getAttachments()
.get(Constants.
INVOCATION_NEED_MOCK);

Right version

String value =
(String) invocation
.getAttachments()
.get(INVOCATION_NEED_MOCK);

Mastery’s result

String value =
<<<<<<< left

invocation.getAttachments()
.get(INVOCATION_NEED_MOCK)

=======
(String) invocation.getAttachments()
.get(Constants.
INVOCATION_NEED_MOCK)

>>>>>>> right
;

JDime’s result

merge

Figure 9: A merge scenario from commit 9f5cc83 of project dubbo, where an expression gets shifted. Mastery’s result is
expected, while JDime’s is conflicting.

To illustrate the capacity of Mastery on handling shifted codes, consider the merge scenario depicted in Fig. 9
(extracted from our dataset, slightly simplified for readability): the method call expression
invocation.getAttachments(...) is shifted into a type cast expression (cast to String type) in the right version,
F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 15 of 21

On the Methodology of Three-Way Structured Merge

and the left version modifies the argument of the method call (the prefix Constants is deleted). Mastery produces the
desired merge, that is, to collaborate the above two changes, whereas JDime reports a conflict.

Recall that IntelliMerge adopts a radical merging strategy, which makes its accuracy only 24.12%. As discussed
in §7.3, the ground truth is biased in favor of GitMerge, causing the accuracy of GitMerge to be even larger than
jFSTMerge.

The scenarios where GitMerge produces unexpected or conflicting results are of special interest to us—in these
merge scenarios, the expected versions (i.e., the merged versions in Git histories) must have been reviewed by the
developers. If we consider only these 9,890 scenarios, the accuracy of the five tools except GitMerge are:

Mastery JDime jFSTMerge IntelliMerge
33.35% 31.17% 17.26% 6.98%

Mastery still achieves the highest accuracy.
7.5. Reported Conflicts (RQ3)

0

5000

10000

15000

20000

Mastery JDime jFSTMerge IntelliMerge GitMerge

Figure 10: The numbers of conflicting blocks of the five tools.

In this evaluation, we measure the number of conflicts reported by the five tools on all merge scenarios. The
numbers and percentages of conflicting results are listed in Table 2. We also count the number of conflicting blocks (i.e.
conflicting hunks) reported by the five tools, which are depicted in Fig. 10. Especially, IntelliMerge’s radical strategy
ignores three-way merge principles, making it achieve the lowest in both metrics. The other four tools all follow the
three-way merge principles. Among them, Mastery reports the fewest 7,057 conflicting blocks and the fewest 3,782
conflicting scenarios. Among the 1,556 scenarios where JDime’s results are conflicting whereas Mastery’s are not, we
find 52.76% involves shifted code—14.23% higher than the overall frequency.
7.6. Runtime Performance (RQ4)

In this evaluation, we evaluate the performance from the perspective of runtime. As unstructured GitMerge is
inherently particularly efficient, we only compare the runtime performance among semistructured and structured tools.
Note that this comparison is fair as all these four tools are written in Java; they are executed on JVM under the same
environment. Ignoring the failed runs, Fig. 11 shows the runtime on merge scenarios sorted by the size (i.e., total
file size in unit of byte) of merge scenarios in ascending order. Since the runtime of each tool has considerable ups
and downs even on the merge scenarios of a similar size, for clearer illustration, we plot each point as the average of
adjacent 100 merge scenarios. The average times for the four tools are:

Mastery JDime jFSTMerge IntelliMerge
10.16 s 25.11 s 13.73 s 4.30 s

Mastery is about 2.5 x as fast as JDime, and about 1.4 x as fast as jFSTMerge, which shows Mastery, as a structured
merging tool, has competitive efficiency to semistructured merging tools.
7.7. Discussions
Threats to Validity We use expected versions, i.e. source files in merge commits, as ground truth. However, there
are three threats to this ground truth:

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 16 of 21

On the Methodology of Three-Way Structured Merge

Scenarios (sorted by size)
100

101

102

Ti
m

e
(s

)

IntelliMerge
jFSTMerge
JDime
Mastery

Figure 11: Time cost of merging.

1. There is no positive ground truth in merge commits since developers do not manually produce conflicts, but
always try to resolve every conflict. But the resolving of conflicting changes in left and right versions must rely
on additional information, which is usually available to a merging tool. Because of the lacking of positive ground
truth, we cannot automatically recognize true positives, false positives and false negatives. Only true negatives
can be automatically recognized, which are exactly the expected results in our taxonomy.

2. The expected version may not exactly be the merged version but the one postponed by a few commits, a.k.a.
supplementary commits. Our dataset extraction process does not consider such supplementary commits. As a
future direction, it is interesting to investigate how to obtain better ground truth by taking the supplementary
commits into account (such as [13, 12]).

3. As discussed in §7.3, because GitMerge is the default merging tool that developers use, if GitMerge reports no
conflicts, its merging results will usually become the ground truth without a careful review by developers, even
if the merging results are actually wrong.

4. By empirical inspection, we found developers introduce additional changes in some merge scenarios, rather than
only collaborating on the changes from left and right.

The ideal ground truth is to only merge changes in left and right correctly without introducing additional changes,
and conflict blocks get reported if the changes are indeed semantically contradicted. Unfortunately, manual efforts
seem inevitable approaching this ideality.
Limitations Among the 1,109 merge scenarios where Mastery produces unexpected results while JDime produces
expected results, we manually studied 10 random samples. We found that: In 4 merge scenarios, the expected versions
introduce additional changes by developers or break three-way merge principles in other ways. Mastery produces the
desired merge results w.r.t. three-way merge principles. The other 6 scenarios failed due to our limited support for
two-way merging, where a merge scenario consists of only the two variants but not the base version. JDime realizes
some heuristic two-way merging strategies, which can handle these merge scenarios better. These strategies can be
realized in Mastery in the future.
Another Limitation: Non-Monotone Matching Generally but practically rarely, there could be non-monotone
matching that obeys the original intuition of what matching is: to align nodes that should be the same one in the
developing. For example, a member could be moved from one method to another method in development, which means
the ancestor-descendant relationship between the statement and the methods is changed. However, even without such
correct matching, it is also possible to correctly merge, which we will show by the example of Fig. 12.

Fig. 12 presents a non-monotone matching that can be produced by GumTree. The dashed lines plot the established
mappings between T1 and T2. We see two class definitions ClassA and ClassB are matched. However, not all members

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 17 of 21

On the Methodology of Three-Way Structured Merge

ClassList

T1

ClassA

MemberList

M1 M2

ClassList

T2

ClassB

MemberList

M3 M4

ClassC

MemberList

M5

Figure 12: A non-monotone matching between T1 and T2 (dashed lines show mappings).

of ClassA are mapped to members of ClassB – M2 is mapped to M5, which is a member of ClassC. By definition, we
see the matching is not monotone. Such a matching brings troubles to AST amalgamation: in which class should the
merge result of integrating M2 and M5 be on the target AST? It could be a member of ClassA (ClassB), or ClassC,
and without further information, we cannot tell which is expected. Suppose we let T1 be base and T2 be a variant, one
may interpret the mapping (M2, M5) as M2 is removed from ClassA and then inserted into ClassC. In that situation,
M5 is a change and thus should be integrated as a member of ClassC on the target AST (if another variant does not
make any inconsistent change) according to three-way merge principles. However, we claim the mapping (M2, M5) is
not needed to achieve the same goal – without it, M2 will still be regarded as a deletion (as it has no matches) and M5
be regarded as an insertion (as it has no matches), according to rows 3 and 4 of Table 1. In this case, we have shown
that there may be adorable to accept matches that are not monotone.

8. Related Work
Westfechtel [25] and Buffenbarger [3] pioneered in proposing merge algorithms that exploit context-free and

context-sensitive structures of programs. Language features such as alternatives, lists, and structures are represented at
an abstract level. Later, differencing and merging approaches that are based on tree structures of programs have been
widely explored.
Structured Merge Westfechtel [25] and Buffenbarger [3] pioneered in proposing merge algorithms that exploit
structures of programs.

JDime [18] is a state-of-the-art tool for merging Java programs at AST level. In their AST representation, ordered
and unordered lists are distinguished, and they propose distinct algorithms for merging them. We further distinguish
ordered list nodes from constructor nodes (§2), as a list node can have an arbitrary number of children while a
constructor node cannot. Their algorithm is in a top-down and level-wise manner and is unable to merge shifted code.

Later, two extensions of JDime are proposed. One is an auto-tuning technique that switches between structured
and unstructured merge algorithms for better efficiency [17]; the other is a syntax-aware looking ahead mechanism
for identifying shifted code and renaming in the AST matcher [16]. To be scalable, the lookahead mechanism has
restrictions on the types of nodes when lookahead is enabled (an if- or try-statement), and the maximum search distance
of lookahead (3 or 4). Note that in their work, the lookahead mechanism is not applied to merging. Unlike them, our
merge algorithm efficiently handles shifted code in a general sense (i.e., without the above restrictions).

Asenov et al. [2] propose an algorithm for matching and merging trees using their textual encoding, which enables
the usage of standard line-based version control systems. To yield precise matching, external information, for example,
unique identifiers across revisions, is required. Unfortunately, they are directly unavailable. Furthermore, they have to
perform expensive tree-matching algorithms.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 18 of 21

On the Methodology of Three-Way Structured Merge

Semistructured Merge Apel et al. [1] invented semistructured merge—a novel way of combining unstructured and
structured approaches—that aims to balance the generality of unstructured merge and the precision of structured merge.
Since semistructured approaches represent only part of the programs (typically high-level structures) as ASTs and keep
the rest (low-level structures, e.g., method bodies) as plain text, they are not as precise as fully-structured approaches.
An empirical study [5] on over 40,000 merge scenarios reveals that semistructured merge reports more false positives
than structured merge.

Shen et al. [23] propose a graph-based refactoring-aware semistructured merging algorithm for Java programs,
which is implemented as a tool IntelliMerge. The major difference between refactoring and shifted code is that
refactoring must preserve semantics while shifted code usually does not.
Conflict Resolution Mens [19] thinks the resolution of conflicts caused by inconsistent changes made by variants
is a major problem in version control. Since the resolutions of those conflicts are ambiguous, developers have the
responsibility to resolve them manually. To alleviate manual efforts, Zhu and He [27] propose a synthesis-based
technique that can automatically suggest candidate resolutions. In a real-time collaborative environment, it is also
possible to simply prevent any presence of conflicts using locks [11, 22, 21, 9].

9. Conclusion & Future Directions
We present Mastery, a three-way structured merge framework based on the methodology of combining the top-

down and bottom-up visits of ASTs. This framework benefits from both the efficiency of handling trivial merge
scenarios via a top-down pass and the effectiveness of handling non-trivial merge scenarios via a bottom-up pass.
Experimental evaluations on real-world merge scenarios show that our approach achieves a higher merge precision
and runs faster than JDime, a state-of-the-art structured merge tool. Moreover, Mastery can effectively merge shifted
code, which reduces the presence of false conflicts.

In the future, we plan to support other programming languages in our framework, and further, improve the tree-
matching and merging algorithms based on our evaluation findings.

Acknowledgement
This work was supported in part by the National Natural Science Foundation of China (No. 62072267 and No.

62021002) and the National Key Research and Development Program of China (No. 2018YFB1308601).

References
[1] Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C., 2011. Semistructured merge: Rethinking merge in revision control systems, in:

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ACM,
New York, NY, USA. pp. 190–200. URL: http://doi.acm.org/10.1145/2025113.2025141, doi:10.1145/2025113.2025141.

[2] Asenov, D., Guenat, B., Müller, P., Otth, M., 2017. Precise version control of trees with line-based version control systems, in: Huisman, M.,
Rubin, J. (Eds.), Fundamental Approaches to Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 152–169.

[3] Buffenbarger, J., 1995. Syntactic software merging, in: Estublier, J. (Ed.), Software Configuration Management, Springer Berlin Heidelberg,
Berlin, Heidelberg. pp. 153–172.

[4] Cavalcanti, G., Borba, P., Accioly, P., 2017. Evaluating and improving semistructured merge. Proc. ACM Program. Lang. 1, 59:1–59:27.
URL: http://doi.acm.org/10.1145/3133883, doi:10.1145/3133883.

[5] Cavalcanti, G., Borba, P., Seibt, G., Apel, S., 2019. The impact of structure on software merging: Semistructured versus structured merge,
in: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1002–1013. doi:10.1109/ASE.2019.
00097.

[6] Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J., 1996. Change detection in hierarchically structured information. SIGMOD
Rec. 25, 493504. URL: https://doi.org/10.1145/235968.233366, doi:10.1145/235968.233366.

[7] Dotzler, G., Philippsen, M., 2016. Move-optimized source code tree differencing, in: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ACM, New York, NY, USA. pp. 660–671. URL: http://doi.acm.org/10.1145/
2970276.2970315, doi:10.1145/2970276.2970315.

[8] Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M., 2014. Fine-grained and accurate source code differencing, in: Proceedings
of the 29th ACM/IEEE International Conference on Automated Software Engineering, ACM, New York, NY, USA. pp. 313–324. URL:
http://doi.acm.org/10.1145/2642937.2642982, doi:10.1145/2642937.2642982.

[9] Fan, H., Sun, C., 2012. Dependency-based automatic locking for semantic conflict prevention in real-time collaborative programming, in:
Proceedings of the 27th Annual ACM Symposium on Applied Computing, Association for Computing Machinery, New York, NY, USA. p.
737742. URL: https://doi.org/10.1145/2245276.2245417, doi:10.1145/2245276.2245417.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 19 of 21

http://doi.acm.org/10.1145/2025113.2025141
http://dx.doi.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/3133883
http://dx.doi.org/10.1145/3133883
http://dx.doi.org/10.1109/ASE.2019.00097
http://dx.doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1145/235968.233366
http://dx.doi.org/10.1145/235968.233366
http://doi.acm.org/10.1145/2970276.2970315
http://doi.acm.org/10.1145/2970276.2970315
http://dx.doi.org/10.1145/2970276.2970315
http://doi.acm.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2245276.2245417
http://dx.doi.org/10.1145/2245276.2245417

On the Methodology of Three-Way Structured Merge

[10] Fluri, B., Wuersch, M., PInzger, M., Gall, H., 2007. Change distilling:tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering 33, 725–743. doi:10.1109/TSE.2007.70731.

[11] Ho, C.W., Raha, S., Gehringer, E., Williams, L., 2004. Sangam: A distributed pair programming plug-in for eclipse, in: Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology EXchange, Association for Computing Machinery, New York, NY, USA. p. 7377. URL:
https://doi.org/10.1145/1066129.1066144, doi:10.1145/1066129.1066144.

[12] Ji, T., Chen, L., Yi, X., Mao, X., 2020. Understanding merge conflicts and resolutions in git rebases, in: 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pp. 70–80. doi:10.1109/ISSRE5003.2020.00016.

[13] Ji, T., Pan, J., Chen, L., Mao, X., 2018. Identifying supplementary bug-fix commits, in: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), pp. 184–193. doi:10.1109/COMPSAC.2018.00031.

[14] Kahn, A.B., 1962. Topological sorting of large networks. Commun. ACM 5, 558562. URL: https://doi.org/10.1145/368996.369025,
doi:10.1145/368996.369025.

[15] Khanna, S., Kunal, K., Pierce, B.C., 2007. A formal investigation of diff3, in: Proceedings of the 27th International Conference on Foundations
of Software Technology and Theoretical Computer Science, Springer-Verlag, Berlin, Heidelberg. p. 485496.

[16] Leßenich, O., Apel, S., Kästner, C., Seibt, G., Siegmund, J., 2017. Renaming and shifted code in structured merging: Looking ahead for
precision and performance, in: 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 543–553.
doi:10.1109/ASE.2017.8115665.

[17] Leßenich, O., Apel, S., Lengauer, C., 2015. Balancing precision and performance in structured merge. Automated Software Engineering 22,
367–397. URL: https://doi.org/10.1007/s10515-014-0151-5, doi:10.1007/s10515-014-0151-5.

[18] Leßenich, O., Lengauer, C., 2012. Adjustable Syntactic Merge of Java Programs. Master’s thesis. Department of Informatics and Mathematics,
University of Passau.

[19] Mens, T., 2002. A state-of-the-art survey on software merging. IEEE Transactions on Software Engineering 28, 449–462. doi:10.1109/
TSE.2002.1000449.

[20] Pawlik, M., Augsten, N., 2011. Rted: A robust algorithm for the tree edit distance. Proc. VLDB Endow. 5, 334345. URL: https:
//doi.org/10.14778/2095686.2095692, doi:10.14778/2095686.2095692.

[21] Reeves, M., Zhu, J., 2004. Moomba – a collaborative environment for supporting distributed extreme programming in global software
development, in: Eckstein, J., Baumeister, H. (Eds.), Extreme Programming and Agile Processes in Software Engineering, Springer Berlin
Heidelberg, Berlin, Heidelberg. pp. 38–50.

[22] Salinger, S., Oezbek, C., Beecher, K., Schenk, J., 2010. Saros: An eclipse plug-in for distributed party programming, in: Proceedings of the
2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering, Association for Computing Machinery, New York, NY,
USA. p. 4855. URL: https://doi.org/10.1145/1833310.1833319, doi:10.1145/1833310.1833319.

[23] Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., Wang, Q., 2019. Intellimerge: A refactoring-aware software merging technique. Proc. ACM
Program. Lang. 3. URL: https://doi.org/10.1145/3360596, doi:10.1145/3360596.

[24] Tarjan, R., 1971. Depth-first search and linear graph algorithms, in: 12th Annual Symposium on Switching and Automata Theory (swat 1971),
pp. 114–121. doi:10.1109/SWAT.1971.10.

[25] Westfechtel, B., 1991. Structure-oriented merging of revisions of software documents, in: Proceedings of the 3rd International Workshop on
Software Configuration Management, ACM, New York, NY, USA. pp. 68–79. URL: http://doi.acm.org/10.1145/111062.111071,
doi:10.1145/111062.111071.

[26] Zhang, K., Jiang, T., 1994. Some max snp-hard results concerning unordered labeled trees. Inf. Process. Lett. 49, 249–254. URL:
http://dx.doi.org/10.1016/0020-0190(94)90062-0, doi:10.1016/0020-0190(94)90062-0.

[27] Zhu, F., He, F., 2018. Conflict resolution for structured merge via version space algebra. Proc. ACM Program. Lang. 2. URL: https:
//doi.org/10.1145/3276536, doi:10.1145/3276536.

[28] Zhu, F., He, F., Yu, Q., 2019. Enhancing precision of structured merge by proper tree matching, in: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), IEEE. pp. 286–287.

[29] Zhu, F., Xie, X., Feng, D., Meng, N., He, F., 2022. Mastery: Shifted-code-aware structured merging, in: Dependable Software Engineering.
Theories, Tools, and Applications: 8th International Symposium, SETTA 2022, Beijing, China, October 27-29, 2022, Proceedings, Springer-
Verlag, Berlin, Heidelberg. p. 7087. URL: https://doi.org/10.1007/978-3-031-21213-0_5, doi:10.1007/978-3-031-21213-0_
5.

Fengmin Zhu is currently studying for his Ph.D. degree at CISPA Helmholtz Center for Information Security, Germany. He
received B.E. degree in computer science and technology in 2017, and MSE degree in software engineering in 2020, both
from Tsinghua University, China. He joined Max Planck Institute for Software Systems for a while, working with Derek
Dreyer on a project of bitfield-manipulating program verification in C. His current research focus is on solving practical
problems via a combination of formal methods, programming language theories, and software engineering methodologies.
His research interests include typing, synthesis, verification, merging and static/dynamic analysis.

Xingyu Xie is currently pursuing a master’s degree in software engineering in Tsinghua University. He received a B.E.
degree in computer science and technology in 2021, also from Tsinghua University. He is interested in logic and formal
methods.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 20 of 21

http://dx.doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/1066129.1066144
http://dx.doi.org/10.1145/1066129.1066144
http://dx.doi.org/10.1109/ISSRE5003.2020.00016
http://dx.doi.org/10.1109/COMPSAC.2018.00031
https://doi.org/10.1145/368996.369025
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1109/ASE.2017.8115665
https://doi.org/10.1007/s10515-014-0151-5
http://dx.doi.org/10.1007/s10515-014-0151-5
http://dx.doi.org/10.1109/TSE.2002.1000449
http://dx.doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.14778/2095686.2095692
https://doi.org/10.14778/2095686.2095692
http://dx.doi.org/10.14778/2095686.2095692
https://doi.org/10.1145/1833310.1833319
http://dx.doi.org/10.1145/1833310.1833319
https://doi.org/10.1145/3360596
http://dx.doi.org/10.1145/3360596
http://dx.doi.org/10.1109/SWAT.1971.10
http://doi.acm.org/10.1145/111062.111071
http://dx.doi.org/10.1145/111062.111071
http://dx.doi.org/10.1016/0020-0190(94)90062-0
http://dx.doi.org/10.1016/0020-0190(94)90062-0
https://doi.org/10.1145/3276536
https://doi.org/10.1145/3276536
http://dx.doi.org/10.1145/3276536
https://doi.org/10.1007/978-3-031-21213-0_5
http://dx.doi.org/10.1007/978-3-031-21213-0_5
http://dx.doi.org/10.1007/978-3-031-21213-0_5

On the Methodology of Three-Way Structured Merge

Dongyu Feng received his B.E. degree in software engineering in 2022, from Tsinghua University, China.

Na Meng is an associate professor in the Department of Computer Science at Virginia Tech, U.S. (since 2015). She received
her PhD in Computer Science at The University of Texas at Austin, U.S. (2014). Her research interests include Software
Engineering and Programming Languages. She focuses on conducting empirical studies on software bugs and fixes, and
investigating new approaches to help developers comprehend programs and changes, to detect and fix bugs, and to modify
code automatically. Nowadays, Dr. Meng also explores to fix security bugs automatically. Dr. Meng received the NSF
CAREER Award in 2019.

Fei He is an associate professor at the School of Software of Tsinghua University. He received the PhD. degree from Tsinghua
University in 2008. His research interests include model checking, program verification and automated logic reasoning. He
has published over 80 papers in academic journals and international conferences. He is currently on the editor board of
“Theory of Computing Systems” and “Frontiers of Computer Science”. He has served as the PC member for many formal
methods conferences, including ICSE, ESEC/FSE, CONCUR, FMCAD, SAT, ATVA, APLAS, ICECCS, SETTA, etc.

F. Zhu et al.: Preprint submitted to Journal of Systems Architecture Page 21 of 21

