
Introduction Algorithm Evaluation

Mastery: Shifted-Code-Aware Structured Merging

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He

School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE, China

Beijing National Research Center for Information Science and Technology

Max Planck Institute for Software Systems

Virginia Tech

Oct. 28, 2022

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 1 / 25



Introduction Algorithm Evaluation

1 Introduction

2 Algorithm

3 Evaluation

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 2 / 25



Introduction Algorithm Evaluation

Three-way merging

base

left

right

target
Three-way merging: integrate consistent changes
introduced by the two branches.
Unstructured merging:
• broadly used in practice;
• recognizes source programs as lines;
• merge accuracy is unsatisfying.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 3 / 25



Introduction Algorithm Evaluation

Structured merging

target

· · ·

· · ·
left

· · ·

· · ·

base
· · ·

· · ·

right

· · ·

· · ·

Structured merging recognizes source code as AST (abstract
syntax tree), which has higher merge accuracy than unstructured
merging.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 4 / 25



Introduction Algorithm Evaluation

AST matching

Assignment

x = InfixExpr

1 + y

Assignment

x = InfixExpr

x + y

Assignment

y = InfixExpr

x + y

left base right

AST matching: When manipulating base AST into some variant,
the matched two nodes (e.g. Assignments) are recognized as the
same one.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 5 / 25



Introduction Algorithm Evaluation

Shifted code

x = (int)(x + y) // left x = x + y // base

Assignment

x = CastExpr

InfixExpr

x + y

Assignment

x = InfixExpr

x + y

Assignment

x = InfixExpr

x + y

left base right

Definition: Given two mappings (u′, v ′) and (u, v), if u is a child
of u′, whereas v is not a child but a later descendant of v ′, then
the code fragment corresponding to v is called a shifted code.
Challenge: Existing structured merging algorithms visits nodes in
a top-down way, so they cannot handle shifted code.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 6 / 25



Introduction Algorithm Evaluation

Our idea

Problem: how to merge shifted code?
Method: introduce a bottom-up merging algorithm.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 7 / 25



Introduction Algorithm Evaluation

1 Introduction

2 Algorithm

3 Evaluation

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 8 / 25



Introduction Algorithm Evaluation

A motivating example

Block

ExprStmt

Assignment

x = CastExpr

InfixExpr

x + y

Block

ExprStmt

Assignment

x = InfixExpr

x + y

Block

ForStmt

ExprStmt

Assignment

x = InfixExpr

x + y

left base right

Four merge scenarios of inner nodes.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 9 / 25



Introduction Algorithm Evaluation

Block

ExprStmt

Assignment

x = CastExpr

InfixExpr

x + y

Block

ExprStmt

Assignment

x = InfixExpr

x + y

Block

ForStmt

ExprStmt

Assignment

x = InfixExpr

x + y

left base right

InfixExpr

x + y

target

Three subtrees of InfixExpr are equal, so their merging is trivial.
Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 10 / 25



Introduction Algorithm Evaluation

Block

ExprStmt

Assignment

x = CastExpr

InfixExpr

Block

ExprStmt

Assignment

x = InfixExpr

Block

ForStmt

ExprStmt

Assignment

x = InfixExpr

left base right

Assignment

x = CastExpr

InfixExpr

x + y

target

Shifted code in left.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 11 / 25



Introduction Algorithm Evaluation

Relevant

If there exsists a descendant w of v such that u matches w , we say
that u is relevant to v .

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 12 / 25



Introduction Algorithm Evaluation

Block

ExprStmt

Assignment

Block

ExprStmt

Assignment

Block

ForStmt

ExprStmt

Assignment

left base right

ExprStmt

Assignment

x = CastExpr

InfixExpr

x + y

target

Just put an ExprStmt atop
the computed merged tree.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 13 / 25



Introduction Algorithm Evaluation

Block

ExprStmt

Block

ExprStmt

Block

ForStmt

ExprStmt

left base right

Block

ForStmt

ExprStmt

Assignment

x = CastExpr

InfixExpr

x + y

target

Shifted code in right: copy the subtree of ForStmt, and replace its
child subtree (ExprStmt) with computed merged result.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 14 / 25



Introduction Algorithm Evaluation

Pseudocode

Algorithm: Shifted Code Merging
1 Function IssueShifted(b: Node, l : Node, r : Node):
2 let l ′, r ′ be nodes s.t. (b, l ′) ∈ ML, (b, r ′) ∈ MR ;
3 if l ′ = l ∧ r ′ = r then return R(b);
4 if l ′ 6= l ∧ r ′ = r then return l [R(b)/l ′];
5 if r ′ 6= r ∧ l ′ = l then return r [R(b)/r ′];
6 if l [R(b)/l ′] = r [R(b)/r ′] then return l [R(b)/l ′];
7 return Conflict(l , r);

b is required to be relevant to l and r .

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 15 / 25



Introduction Algorithm Evaluation

Framework

Case 1: Leaf

Case 2: Constructor

Case 3: Unordered List

Case 4: Ordered List

Shifted Code Merging

Bottom-up pass

target AST

Top-down pass trivial merge scenarios processed

non-trivial
merge scenarios

invoke

The technical details could be found in our paper.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 16 / 25



Introduction Algorithm Evaluation

1 Introduction

2 Algorithm

3 Evaluation

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 17 / 25



Introduction Algorithm Evaluation

Dataset

We seek the top-100 most popular open-source Java projects on
GitHub1; exclude any non-software-project (e.g., tutorials).
On the remaining 78 projects, we extract 40,533 merge scenarios
via an analysis of their commit histories.

1According to the following list, until July 12, 2021:
github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 18 / 25

github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md


Introduction Algorithm Evaluation

Frequency of shifted code

38.54% among 40,533 merge scenarios

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 19 / 25



Introduction Algorithm Evaluation

Baseline tools

We compare Mastery with four state-of-the-art merge tools:
• JDime: structured;
• jFSTMerge: semistructured, tree-based;
• IntelliMerge: semistructured, graph-based, refactoring-aware;
• GitMerge: unstructured, the default merging tool in Git.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 20 / 25



Introduction Algorithm Evaluation

Taxonomy of results

merge?

left/base/right

target

failed

conflict? = ground
truth2?

conflicting

expected

unexpected

yes
no yes

no yes
no

2We use code merged by developer as ground truth.
Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 21 / 25



Introduction Algorithm Evaluation

Distribution of results

Tool Expected
(Accuracy) Unexpected Conflicting Failed

Mastery 82.26% 8.64% 9.09% 0.00%
JDime 80.89% 6.03% 11.37% 1.70%

jFSTMerge 74.17% 9.47% 16.35% 0.01%
IntelliMerge 24.11% 60.58% 8.49% 6.81%
GitMerge 75.60% 1.95% 22.45% 0.00%

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 22 / 25



Introduction Algorithm Evaluation

Shifted-aware merging is effective

• Among the 1,398 scenarios where Mastery’s results are
expected whereas JDime’s are not, 48.78% (+10.25%)
involves shifted code.

• Among the 1,650 scenarios where JDime’s results are
conflicting whereas Mastery’s are not, 51.82% (+13.28%)
involves shifted code.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 23 / 25



Introduction Algorithm Evaluation

Runtime performance

Tool Mastery JDime jFSTMerge IntelliMerge
Sort structured semi-structured
Avg Time 10.33 s 24.06 s 13.21 s 4.34 s

Mastery is 2.4x as fast as JDime, and 1.3x as fast as jFSTMerge.

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 24 / 25



Introduction Algorithm Evaluation

Recap

Problem: how to merge scenarios containing shifted code in
structured merging?
Method: merging in both top-down and bottom-up way.
Evaluation: improve overall efficiency and effectiveness.

Tool: https://github.com/thufv/mastery

Thanks!

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 25 / 25

https://github.com/thufv/mastery

	Introduction
	Algorithm
	Evaluation

