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Three-way merging

base

left

right

target
Three-way merging: integrate consistent changes
introduced by the two branches.
Unstructured merging:
• broadly used in practice;
• recognizes source programs as lines;
• merge accuracy is unsatisfying.
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Structured merging
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Structured merging recognizes source code as AST (abstract
syntax tree), which has higher merge accuracy than unstructured
merging.
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AST matching

Assignment

x = InfixExpr
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AST matching: When manipulating base AST into some variant,
the matched two nodes (e.g. Assignments) are recognized as the
same one.
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Shifted code

x = (int)(x + y) // left x = x + y // base
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InfixExpr

x + y

Assignment

x = InfixExpr

x + y

Assignment

x = InfixExpr
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left base right

Definition: Given two mappings (u′, v ′) and (u, v), if u is a child
of u′, whereas v is not a child but a later descendant of v ′, then
the code fragment corresponding to v is called a shifted code.
Challenge: Existing structured merging algorithms visits nodes in
a top-down way, so they cannot handle shifted code.
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Our idea

Problem: how to merge shifted code?
Method: introduce a bottom-up merging algorithm.
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A motivating example
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Four merge scenarios of inner nodes.
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Three subtrees of InfixExpr are equal, so their merging is trivial.
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Shifted code in left.
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Relevant

If there exsists a descendant w of v such that u matches w , we say
that u is relevant to v .
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Just put an ExprStmt atop
the computed merged tree.
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Shifted code in right: copy the subtree of ForStmt, and replace its
child subtree (ExprStmt) with computed merged result.
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Pseudocode

Algorithm: Shifted Code Merging
1 Function IssueShifted(b: Node, l : Node, r : Node):
2 let l ′, r ′ be nodes s.t. (b, l ′) ∈ ML, (b, r ′) ∈ MR ;
3 if l ′ = l ∧ r ′ = r then return R(b);
4 if l ′ 6= l ∧ r ′ = r then return l [R(b)/l ′];
5 if r ′ 6= r ∧ l ′ = l then return r [R(b)/r ′];
6 if l [R(b)/l ′] = r [R(b)/r ′] then return l [R(b)/l ′];
7 return Conflict(l , r);

b is required to be relevant to l and r .
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Framework

Case 1: Leaf

Case 2: Constructor

Case 3: Unordered List

Case 4: Ordered List

Shifted Code Merging

Bottom-up pass

target AST

Top-down pass trivial merge scenarios processed

non-trivial
merge scenarios

invoke

The technical details could be found in our paper.
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Dataset

We seek the top-100 most popular open-source Java projects on
GitHub1; exclude any non-software-project (e.g., tutorials).
On the remaining 78 projects, we extract 40,533 merge scenarios
via an analysis of their commit histories.

1According to the following list, until July 12, 2021:
github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md
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Frequency of shifted code

38.54% among 40,533 merge scenarios

Fengmin Zhu, Xingyu Xie, Dongyu Feng, Na Meng, Fei He
Mastery: Shifted-Code-Aware Structured Merging 19 / 25



Introduction Algorithm Evaluation

Baseline tools

We compare Mastery with four state-of-the-art merge tools:
• JDime: structured;
• jFSTMerge: semistructured, tree-based;
• IntelliMerge: semistructured, graph-based, refactoring-aware;
• GitMerge: unstructured, the default merging tool in Git.
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Taxonomy of results

merge?

left/base/right

target

failed

conflict? = ground
truth2?

conflicting

expected
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yes
no yes

no yes
no

2We use code merged by developer as ground truth.
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Distribution of results

Tool Expected
(Accuracy) Unexpected Conflicting Failed

Mastery 82.26% 8.64% 9.09% 0.00%
JDime 80.89% 6.03% 11.37% 1.70%

jFSTMerge 74.17% 9.47% 16.35% 0.01%
IntelliMerge 24.11% 60.58% 8.49% 6.81%
GitMerge 75.60% 1.95% 22.45% 0.00%
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Shifted-aware merging is effective

• Among the 1,398 scenarios where Mastery’s results are
expected whereas JDime’s are not, 48.78% (+10.25%)
involves shifted code.

• Among the 1,650 scenarios where JDime’s results are
conflicting whereas Mastery’s are not, 51.82% (+13.28%)
involves shifted code.
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Runtime performance

Tool Mastery JDime jFSTMerge IntelliMerge
Sort structured semi-structured
Avg Time 10.33 s 24.06 s 13.21 s 4.34 s

Mastery is 2.4x as fast as JDime, and 1.3x as fast as jFSTMerge.
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Recap

Problem: how to merge scenarios containing shifted code in
structured merging?
Method: merging in both top-down and bottom-up way.
Evaluation: improve overall efficiency and effectiveness.

Tool: https://github.com/thufv/mastery

Thanks!
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