
On lightweight Hoare logic of probabilistic pro-
grams: a bound tighter than the union bound

Xingyu Xie

Tsinghua University

Abstarct
In the formal verification of probabilistic programming, lightweight Hoare
logics are proposed to reason about a bound of the failure probability of
non-probabilistic assertions. The existing lightweight Hoare logic, aHL,
relies on the union bound, a simple tool from probabilistic theory. How-
ever, we found that the union bound is loose in general.

In this work, we tighten the bound in aHL and prove its soundness and
tightness. Downstream tools that rely on aHL can directly benefit from
our out-of-the-box improvement. Practical applications to demonstrate
the superiority of our theoretical improvements are in the plan.

Starting Point: aHL
aHL[1] is based on a standard probabilistic imperative language, whose
core grammar is

c ::= x← e | x←$ d | c; c | if b then c else c | while b do c.

An aHL judgment is of the form

⊢β c : Φ =⇒ Ψ,

which means that from any initial program state satisfying Φ, after exe-
cuting program c, Ψ holds except with a probability at most β. In other
words, β is a bound of the failure probability for c with respect to the
specification of precondition Φ and postcondition Ψ.

A key of aHL is how to give a bound for the rule of sequential compo-
sition. The solution is provided by the union bound: for events A and B,
Pr[A ∪B] ≤ Pr[A] + Pr[B]. Internalizing the union bound in the logic,
the sequential composition rule [SEQ] of aHL is as follows.

[SEQ]
⊢β1 c1 : Φ =⇒ Ξ ⊢β2 c2 : Ξ =⇒ Ψ

⊢β1+β2 c1; c2 : Φ =⇒ Ψ

The above rule expresses that if the failure probability for c1 is no more
than β1 and the failure probability for c2 is no more than β2, the failure
probability for c1; c2 is no more than β1 + β2. More detailedly, this rule
expresses that if (1) from any state satisfying Φ, after executing program
c1, Ξ holds except with a probability at most β1, and (2) from any state
satisfying Ξ, after executing program c2, Ψ holds except with a probabil-
ity at most β2, then from any state satisfying Φ, after executing program
c1; c2, Ψ holds except with a probability at most β1 + β2.

Figure 1 shows the intuition of this bound. The blue ellipse represents
the event that c1 fails, and the yellow one represents the event that c2 fails.
The blue area is no more than β1, and the yellow area is no more than β2.
Thus, the colored area is no more than β1 + β2, which indicates a bound
for the event that c1; c2 fails.

Figure 1: union bound: β1 + β2

Critique to aHL

Question We observe that the union bound, β1 + β2, may exceed 1,
which is a useless case since the probability is always no more than 1 by
definition.

However, finding a tight (accurate) failure bound is a fundamental quan-
titative analysis task for probabilistic programs. Now, a question arises
naturally: What bound is tight enough for aHL?

Analysis We point out that the union bound ignores the dependence be-
tween the two composed programs: only when c1 does not fail, it is mean-
ingful for us to consider whether c2 fails, as shown in Figure 2. Roughly
speaking, c1; c2 fails only when c1 and c2 do not both succeed, which in-
dicates that 1− (1− β1)(1− β2) is a bound.

Figure 2: our bound:
1− (1− β1)(1− β2) = β1 + β2 − β1β2

Results
We improve the crucial sequential composition rule [SEQ] as follows.

[SEQ-X]
⊢β1 c1 : Φ =⇒ Ξ ⊢β2 c2 : Ξ =⇒ Ψ

⊢β1+β2−β1β2 c1; c2 : Φ =⇒ Ψ

We prove (with pen and paper) that the rule [SEQ-X] is sound and tight.

Theorem 1 (soundness) For the rule [SEQ-X], if the premise judgments
are valid, then the conclusion judgment is valid.

Theorem 2 (tightness) There exist programs and specifications so that
applying the rule [SEQ-X] produces the exact failure probability of the
conclusion.

In other words, this tightness means that there is a practical application
of the rule achieving the bound, which cannot be satisfied in aHL.

References
[1] G. Barthe et al. “A Program Logic for Union Bounds”. In: 43rd In-

ternational Colloquium on Automata, Languages, and Programming
(ICALP 2016).

